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propagation wave

are the periods of

In the case of a

odic (with period

number of the exciting field, a and b

the structure in x and y,

structure in free space which is peri-

a) in x and arbitrary in y, the free

space modes are modified by replacing the normalization

factor 27r by 42~a and recognizing that the wave num-

bers k.! and kxi” take on the discrete values

while the wave numbers ku~f and ku~” are given by

These modes are orthogonal in the strip --a/2 <x <a/2

and —m<y< co. In the special case of a structure

periodic in x but uniform in y, such as an infinite strip

grating, the normalization factor is taken as ~~, and

q = O. The exponential y dependence is suppressed.
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Reflectors for a Microwave FabryPerot interferometer”

W. CULSHAW~

Summary—The advantages of microwave interferometers for
wavelength and other measurements at millimeter wavelengths are
indicated, and a microwave Fabry-Perot interferometer discussed in

detail. Analogous to the cavity resonator, this requires reflectors of

high reflectivity, small absorption, and adequate size. Stacked di-

electric plates, and stacked planar or rod gratings are shown to be

suitable forms of reflectors, and equations for the reflectivity, opti-

mum spacing, and bandwidth of such structures are derived. A series

of stacked metal plates with regularly spaced holes represents a good
design of reflector for very small wavelengths. Fringes and wave-

length measurements at 8-mm wavelength are given for one design
of interferometer, these being accurate to 1 in 101 without any dif-
fraction correction. For larger apertures and reflectors in terms of

the wavelength, errors due to diffraction will decrease.

I. INTRODUCTION

I

N conjunction with the efforts directed toward the

generation and use of shorter wavelengths in the

millimeter region, it is necessary to develop new

techniques of transmission and measurement. The fa-

cility with which methods based on optical techniques

can be used for this purpose improves as the wavelength

decreases, in contrast to the conventional waveguide

methods, where the dimensions of cavity resonators and

other components are in general comparable with the

wavelength, with a consequent increase in attenuation

and fabrication difficulties. Wavelength measurements

can be made with interferometers based on optical prin-

ciples, and at wavelengths around a few millimeters,

such methods would be preferable to the use of a cavity

resonator.

* Manuscript received by the PGMTT, July 10, 1958; revised
manuscript received, November 10, 1958.
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Fig. l—Microwave form of Michelson interferometer.

A free-space form of Michelson interferometer is

shown in Fig. 1; here the beam from the radiating horn is

divided by the beam divider into two beams which

travel different paths. The two beams then are recom-

bined in the receiving horn, and interference is observed

between the two sinusoidal wave trains as one of the re-

flectors is moved. This interferometer has been operated

at A = 1.25 cm, 1 the wavelength measurements with a

particular form being accurate to a few parts in 104

without any correction for diffraction. The free-space

beam divider and reference arm can be replaced by a

hybrid tee at these wavelengths, and then only a single

radiator and reflector are required for the open arm.

I W. Culshaw, “The Michelson interferometer at millimeter wave-
lengths, ” PYOC. Phys. Sot. B, vol. 63, pp. 939–954; November, 1950.
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Such an interferometer was used by Froome for the ac-

curate determination of the velocity of electromagnetic

waves by microwave interferometry. 2 By applying a dif-

fraction correction for the open arm of the interferome-

ter, he obtained a result in agreement with recent deter-

minations by other methods, including the cavity reso-

nator.3

Microwave inferferometers can also be used with ad-

vantage at wavelengths around 1 cm and below for the

measurement of dielectric constants, and at very short

wavelengths would again be preferable. Both the Mi-

chelson and Fabry-Perot types of interferometer have

been used for this purpose, l‘4 and more recently Blair5

has described a microwave interferometer designed spe-

cifically for the measurement of dielectric constants of

materials in sheet form at wavelengths around 3 cm,

The fringes in the Michelson interferometer are due

to the interference of two wave trains, and for maximum

sensitivity the beams must be accurately balanced to

give a sharp null. In the Fabry-Perot interferometer

shown in Fig. 2 the fringes are made very sharp by

multiple reflections between two highly reflecting sur-

faces, and in the microwave region it represents the free-

space analog of the cavity resonator. The narrow bright

rings in the optical form of this interferometer show the

increased resolution possible.G The principle of the mi-

crowave form is exactly analogous, though the technique

of reflector design is different because any metallic film

would seriously attenuate the microwave radiation.

Also, we deal essentially with a single plane-wave train

in the microwave form so that the circular fringe system

is not obtained, except that the distance d between the

reflectors can be adjusted to pass various portions of the

continuous plane-wave spectrum radiated by the aper-

ture.

To obtain high sensitivity in this interferometer the

reflectivity of the reflectors must approximate that of

metals such as silver, and undue attenuation in the re-

flector system must be avoided. The reflectors and aper-

tures used must also be large compared with the wave-

length, so that errors in the wavelength measurement

due to diffraction are reduced, and their consideration

facilitated as required in work of high precision. We

shall be mainly concerned with ways of meeting these

requirements on the reflectors, bearing in mind that any

reflector technique developed should be applicable to

wavelengths extending down to 1 millimeter and below,

when adequate sources are available.

Z K.. D. Froome, “Determination of the velocity of short electro-
magnetic waves by inter ferometry, ” Proc. Roy. SOL A, vol. 213, pp.
123–141 ; 1952.

3 L. Essen, “The velocity of propagation of electromagnetic waves
derived from the resonant frequencies of a cylindrical cavity resona-
tor, ” Proc. Roy. Sot. A, vol. 204, pp. 260–277; December, 1950.

4 W. Culshaw, “The Fabry-Perot interferometer at millimeter
wavelengths, ” Proc. Phys. SOL B, vol. 66, pp. 597-608; July, 1953.

5 G. R. Blair, “An ultra-precise microwave interferometer, ” 1958
IRE NATIONAL CONVENTION RECORD, pt. 1, pp. 48-56.

GF. A. Jenkins and H. E. White, “Fundamentals of Optics, ” Mc-
Graw-Hill Book Co., Inc., New York, N. Y., pp. 269–2i’4; 1950.
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Fig. 2—Microwave Fabry-Perot interferometer.

The theory of the Fabry-Perot interferometer as ap-

plied to the microwave region will be dealt with first,

together with the theory necessary for the consideration

of composite reflecting systems. These will consist of

lattice structures such as stacked dielectric plates,

stacked metal rod gratings, and stacked metal plates

with holes in them.

II. THE FABRY-PEROT INTERFEROMETER

An arrangement of this is shown in Fig. 2, electro-

magnetic horn radiators with lenses being used to pro-

duce efficient radiating and receiving apertures. Radi-

ated energy passes between the reflectors, represented

by the dielectric sheet reflectors shown, and at certain

spacings of the reflectors, separated by A/2 intervals, the

multiply reflected waves reinforce each other to give a

sharp transmitted fringe. The sharpness of the fringe as

d varies depends on the reflectivity obtained, and on the

angular width of the radiated and received spectra,

since d can be optimized for each plane wave in the

spectrum. This interferometer is basically quite simple,

it does not require any form of beam divider, and the

problem of preserving a balance with displacement be-

tween two interfering beams, as in the Michelson type,

does not arise. It is, however, necessary to use highly

reflecting devices for the reflectors, as the setting ac-

curacy and the diffraction correction will depend on this.

The theory of operation of the interferometer may be

developed using transmission line theory, Referring to

Fig. 3, the general transmission Iine matrix of the sym-

metrical four terminal network may be written

(1)

For matched conditions at the output, and all imped-

ances normalized with respect to the characteristic im-

pedance of the line, the input impedance Zi. may be

determined. The voltage amplitude reflection coefficient

is then,

B–C

‘V=2A+B+C’
(2)
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GRATINGELEMENT

Fig. 3—Line symmetrically loaded by transmission
matrix of grating element.

and the ratio of the voltage or current at the output

terminals to the incident voltage or current is given by

2
/=

2A+ B+C”
(3)

Assuming a single plane wave propagating along its

axis, the equation governing the transmission and re-

flection in the complete interferometer may be written

in matrix form as

where the elements a, b, and c, refer to the symmetrical

reflectors, y = a+jfl is the propagation constant for the

medium between the reflectors, and d is the distance be-

tween them. With matched conditions at the output

terminals, the condition for no reflection from the in-

terferometer is

2a
tanh ~d = – — (5)

b+c”

At this separation the whole system is matched, and

assuming no loss in the reflectors or in the medium be-

tween them, the modulus of the transmission coefficient

is unity.

Using (4), and substituting the matrix elements cor-

responding to A, B, and C in (2) and (3), the reflection

and transmission coefficients of the interferometer, rr

and tI,may be determined. For no loss in the reflectors,

and with y =jf? these may be written

lrll’-
4R sinz @

—
l–2Rcos2#l+R2

(6)

[tII’=
(1 – R)’

l–2Rcos24+R~
(7)

where

4 = (~d + 1), R= lrlz,

and

I ~1 exp (-~1) =j(b - c)/[2a +j(b + c)I.

Hence I tr]2 and 1rI I 2 have maximum values when

@ = wr, and @ = (2?2 + l)7r/2 (8)

respectively, where n is the order of interference.

Eqs. (6) and (7) show that the sharpness of the

fringes depends on the value of reflection coefficient, R,

obtained, and some fringe shapes for various reflectivi-

ties are shown in Fig. 4. For precise work high reflec-

tivity must be used since the discrimination with d, or

setting accuracy achieved, will depend on~ this. A meas-

ure of the fringe sharpness may be obtained b,y deducing

the Q factor of the reflectors from (7), since the value of

@ at which the transmitted power is half the maximum

is given by

COS24u = [2R – (1 — R)2]/2R. (9)

10

08

0.2

0
2~ IN RAOIANS

Fig. 4—Variation of fringe sharpness with reflectivity.

The change in (3d required to obtain the angle @l, can be

effected by changing the wavelength, or the spacing of

the reflectors, and the respective Q values deduced are

and

(10)

Actually instead of the single plane wave assumed so

far, the aperture will radiate an angular spectrum of

plane waves determined by its size, and its field distribu-

tion. The portion of this angular spectrum which is effec-

tive between the reflectors at any particular spacing d

may be deduced from (8) and (10), since al wave travel-

ing at an angle 8 to the axis corresponds to a change in

path length given by

Ad = d(l – COS 6), (11)

and can also be regarded as a change in eilective wave-

length to X/cos 0. As an approximation considering only

those waves propagated between the positions of half-

maximum intensity the result is

cos O = 1 — l/2Q~, (12)

which shows that the higher the reflectivity, the smaller

the number of plane waves which are transmitted

through the interferometer at optimum, and other

s~acinm of the reflectors.. .
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For reflectors very large compared with the wave-

length, the angular width of the plane-wave spectra

generated will correspond to the radiation pattern of the

horns, and depending on the reflectivity as indicated by

(12), a number of these will be passed by the reflector

system at any particular distance d, the reflector system

thus acting as a plane-wave filter. The summation of the

plane waves which pass through the complete interfer-

ometer will lead to an optimum setting slightly different

from that given by (8), which assumes a single plane

wave along the axis, and in the measurement of length

with the interferometer the diffraction correction is the

difference between the errors due to the two summations

of plane waves effective in the interferometer at the

initial and final reflector separations used. The correc-

tion can be made small if the reflectivity and order of

interference used are such that O becomes a very small

angle. In general, for the high values of reflectivity dis-

cussed later, and apertures and reflectors some 15 wave-

lengths in extent, it is found experimentally that the

error due to diffraction in a wavelength measurement on

the interferometer is around a part in 104. For apertures

and reflectors larger in terms of wavelengths the error

would decrease. Some quantitative discussion on the

diffraction correction could be made using (7) to find the

transmission coefficient through the interferometer for

different distances d and reflectivities. The radiated and

received angular spectra of the apertures, their distances

from the reflectors, and the reflector size would also

have to be considered.

III. THEORY OF REFLECTOR DESIGN

One type of reflector which has been used4 is shown in

Fig. 2, and consists of a number of quarter-wave plates

of dielectric with quarter-wave air spacings between

them. If e is the dielectric constant and zero dielectric

loss is assumed, the amplitude reflection coefficient from

n such sheets and spacings is equal to that of a single

quarter-wave sheet having a dielectric constant of en. In

view of the high reflectivities involved, however, the

effect of a finite dielectric loss must be considered, and

it is found4 that if A 1 refers to the amplitude reflection

coefficient from a single quarter-wave sheet, and An that

from n such sheets with quarter-wavelength spacings

between them, then

A,+ An(R,’ + #)/(l + RO’*)
An+l = > (13)

1 + AIAn

where Al= Ro(l+4)/(l+R02~), x=exp (–r tan ~/2),

tan 8 is the loss tangent of the dielectric, and RO is the

rV.+17 r s cos O + j/2 sin 19(t + w),

styrene e = 2.56 and tan 8 =0.001 approximately, and

the values of A ~ shown in Table I are obtained, the

limiting value being 0.9982.

TABLE I

VALUES OF TEE AMPLITUDE REFLECTION COEFFICIENT
OBTAINED FROM n QUARTER-WAVE PLATES OF

POLYSTYRENE WITrI Y/4 AIR
SPACE BETWEEN THEM.

nll12131415161718
——— t I 1 1 1

An 0.43780.73400.8861 0.9528 0.9806 0.9913 0.9961 0.9977

Fig. 5 shows the fringes obtained, at given spacings of

the reflectors, as d is varied for an interferometer with

reflectors consisting of eight such plates of polystyrene.4

These had a diameter of about 11 inches, the radiating

and receiving apertures being 6 inches square, and the

wavelength around 8.33 mm. The sharpness of the

fringes illustrates the potentialities of this interferome-

ter for accurate measurements at very short wave-

lengths. For a dielectric with smaller loss and higher

dielectric constant, such as fused quartz, higher values

of reflectivity can be obtained. Such reflectors would be

very costly due to the required size, except at very short

wavelengths, but here the reflector plates become very

thin. Odd multiples of quarter wavelength may be used,

but the ultimate reflectivity obtained and the band-

width of the reflectors will decrease.

This leads to the consideration of other types of re-

flectors, such as a stacked system of gratings, consisting

of plane layers of inductive, or capacitive, irises or rods

placed symmetrically behind each other, similar to the

structures used in delay dielectrics.’ Fig. 3 shows the

basic element which can be used for all the structures

considered, the particular grating being represented by

a discontinuity transmission matrix symmetrically lo-

cated on a length of parallel plate transmission line. The

transmission line matrix representing the discontinuity

may be derived from the equivalent networks of the

various gratings, and the reflectivity from a finite num-

ber of such elements must be determined. Only TEM

mode interaction between the gratings is considered,

and all other modes on the structure must be evanescent.

Since only even order modes are excited on such a sym-

metrical structure, a spacing between grating elements

less than X is sufficient for this, but in practice a spacing

less than 1/2 is preferable.

The matrix representing the basic element shown in

Fig. 3 may be written for a lossless transmission line as,

COS6(W + t)/2 +js sin O – (w – t)/21 Fvml ,4”,

L.+,1=Lcoso(w+o/2 +j~ sine+ (~ - O/L s cos 0 +j/2 sin (l(t + w) h.] “4)

amplitude reflection coefficient at the air-dielectric

boundary. The effect of dielectric loss is to limit the re-
7 J. Brown, “Microwave Lenses, ” Methuen and Co. Ltd., London,

flectivity obtainable by stacking such sheets. For POIY- Eng., pp. 53-68; 1953.
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Fig. 5—Fringe shapes measured on microwave
Fabry-F’erot interferometer.

where O= 2rl/A. Also referring to (2) and (3), and Fig. 6,

we obtain for the general four terminal network,

[1[
B–C

bn~l
2A–(l?+c) b

2’ 1[11n
2—— (15)

2A+B+C B–C’
an+I a%

2’–2

and since rn+l = b*+ Jati+l, and Y.= aJb~, the recurrence

relation between the reflection coefficients for elements

in cascade is,

[2 A–(B+c)]r. +B–c
2’.+1 = (16)

2A+ B+ C–(B– C)%’

and by inserting elements corresponding to A, B, and C,

from (14), the reflectivity from a number of basic ele-

ments may be determined. The transmission coefficient

t.= bJafi+l may also be deduced from (15).

The spacing 1between gratings for optimum reflection

may be deduced from the equivalent matrix of the basic

element by deducing its effective propagation constant

17, and characteristic impedance Z. Using (1), these are

given bys

cosh I’J = A , and 22 = B/C (17)

and may be determined from (14) for any particular

structure. Putting @= rl, the over-all matrix for n such

structures in cascade may then be written as

rV.1 r cosh P31$, Z sinh ZZY1rV~~

1111
In = — sinh n$, cosh

z

Consider such a periodic structure,

cosh4= A =scos O+j/2

then by (14)

sin 19(t+ w), (19)

and putting #J= (a +j~) 1, since cosh ~ must be real, the

stop bands of the structure are given by sin P = O, and

the pass bands by sinh a =0. Thus for the pass bands:

cos@=A where lA/ <1, (20)

and in the stop bands:

cosh a = I A I where ]Al >1. (21)

gL. Brillouin, “Wave Propagation in Periodic Structures, ” Dover
Publications Inc., New York, N. Y., pp. 193-226; 1953.

f“

~...
0“+1—
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A s I ‘--

b;

‘n+~=’”r”’
Fig. 6—Reflection and transmission coefficients

of four-terminal network.

Thus from (2) and (18), if the spacing 1between grat-

ings is such that 6’ lies within a pass bancl of the struct-

ure, the reflection coefficient Y. becomes

j(Z2 – 1) sin 22P
?-. =

22 cos @ + j(ZZ + 1) sin n~
(22)

while for spacings corresponding to a stop band,

(z’ – 1) sinh na
Yn = ——

22 cosh W+ (Z2+ 1) sinh mx
[23)

For spacings such that 6 lies within the pass band, the

reflection coefficient Y. will oscillate with increase in n,

and become zero when sin nfl = O. As an example, a thin

grating may be represented by an admittance Y=jB on

the line and (14) and (20) give

cos @ = cos 0 — B/2 sin 0 (24)

and 73=0 when tanz 0(1 –B2) +413 tan 0--3 =0, with

similar results for other values of n.

When 1is such that 6’ lies in the stop band of the struc-

ture, the reflectivity will increase monotonically with n,

and it is found from (17), (22), and (23) that the spacing

for maximum reflectivity, corresponds to the value of

Owhich gives the maximum value of cosh a ==] A I within

the stop band. Eq. (24) is plotted in Fig. 7 for various

values of B; for inductive admittances the pass band

extends from values of O<m to f3= m, thle interval di-

minishing with increasing values of B. Similar remarks

apply to capacitive admittances, the pass band now ex-

tending from 0 =W to 8>T. Thus 1=h/2 is not a good

spacing for gratings of this type since it corresponds to

the edge of the pass band and will be freque~cy sensi-

tive. The spacing for optimum reflection corresponds to

the maxima of these curves, which shows that, except

for small values of B, a spacing of 1=A/4 will be satisf-

actory for thin gratings. For B = – 2 the pass band ex-

tends from 8 = 7r/2 to O= r, and Fig. 8 shows the varia-

tion in reflectivity, and the zeros which occur within the

pass band for different values of n and spacing 1. Similar

considerations apply to thick gratings, and will be used

to optimize the design of reflectors of this type.

IV. APPLICATION TO GRATING REFLECTORS

A) Thin Planar Gratings

Fig. 9 shows a good structure for the reflectors, which

consists of a series of circular holes regularly spaced in a
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Fig. 8—Reflectivity \ r. 12versus spacing 1 for thin gratings, showing
oscillations of reflectivity in pass band of structure.

thin metal sheet. Such a system of gratings is equivalent

to a number of inductive susceptances across the parallel

plate transmission line, and values of the normalized

susceptances are given by (25),9 when the transverse

spacings a and b are <h, and where R/a and R/b< 1, R

being the hole radius.

3abA 72
B=--– —--

ThR2

where X = [~R(m2/ut+tij/bj) ] l/t/(wj/aZ+~Z/bt)bfZ, the

primes denote summation over even integers only, J1 is

the Bessel function of order unity, and e~,. = 1 if
if m, n=O, and =2 if W, n#O. For a/R>5 the term

3abA/8~Rs, which agrees with the usual value of sus-

ceptance for such a small hole, 10 is adequate.

Values of the reflectivity \ rn \ ‘ for such a structure,

calculated from (16) or (23), are shown in Table II for

9 J. Munushian, “Electromagnetic Propagation Characteristics of
Space Arrays of Apertures-in-Metal Discontinuities and Comple-
mentary Structures, ” University of California, Berkeley, Electronics
Res. Lab. Rep., Ser. No. 60, Issue 126; September, 1954.

IO c. G. Montgomery, R. H. Dicke, and E. M. purcell, “principles
of Microwave Circuits, ” M.I.T. Rad. Lab. Ser., McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 176-179; 1948.

AT 1= A/4 SPACING.

n B=–2 B=–S B=–10 B=–30

0.5000 0.86207 0.96154 0.99558
; 0.8000 0.99364 0.99960 0.99999

a spacing 1 of A/4, the reflectivity increasing when

further gratings are added. At a wavelength of 6.28

mm, with spacing a = b = 0.125 inch, and a hole diameter

of 1/16 inch, the normalized susceptance would be

around — 15, and the attenuation constant for the first

higher mode on the structure would be 86 db per wave-

length, representing a suitable design for this wave-

length.

Similarly the reflectivities possible by stacking induc-

tive or capacitive strip gratings may be calculated using

the appropriate formula for the equivalent reactance. 11

B) Thick Gratings

A capacitive rod type of grating structure is shown in

Fig. 10, with the equivalent circuit, the electric vector

being perpendicular to the metal rods. Values of the

appropriate reactance are given byl’

~2y2

——

3a’ 1
1 ?@%’

xb=– T—
[

3~2Y2

1 + ~ ,tl’r’ in (277’/.) – ~ 1, (26)
a

where (3= 2ir/A, a is the rod spacing in the grating, and

r is the rod radius. Using these values the discontinuity

matrix is determined, and substitution of its elements

into (17), gives the effective propagation constant, and

characteristic impedance of the basic element. The re-

flectivity follows from (16) or (23), once the spacing for

11N. Marcuvitz ‘~waveguide Handbook, ” M. I.T. Rad. Lab. Ser.,
McGraw-Hill Book’ Co., New York, N. Y., pp. 280-285 ~1951.

12L. Lewin, “Advanced Theory of Waveguides, ” Ihffe and Sons
Ltd., London, Eng., pp. 37-44; 1951.
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Fig. 10—Stacked capacitive rod gratings and equivalent circuits.

optimum is determined; this is done by finding the

value of 1 which gives the maximum value of cosh a, as

indicated in Section III.

Consider a wavelength of 6.28 mm and rods of diame-

ter 0.063 inch, which are readily available, then r/h

=0.1275, and for a/h= O.417, (26) gives X.= –0.95 and

X~= –0.372, and hence s= 1.3916, t = –0.890j, and

w = 1.053j. The effective propagation constant of the

basic element is then

cosh @ = A = 1.3916 cos 0 — 0.0815 sin 0. (27)

Fig. 11 shows the variation of A with 0, the optimum

value of 1 being close to h/2 for this grating. Values of

reflectivity ] r. 12are shown in Table III for this spacing.

A spacing 1 of 3A/4 was also considered, but as indicated

by Fig. 11, such a spacing is within the pass band of the

infinite structure, and is not suitable. The values

~r~l 2=0.48542 and [r,l 2=0.0244 obtained, showed this
conclusion to be correct.

At a wavelength of 6 mm the bulk reflectivity I r] 2 of

silver is around 0.99958, and thus the reflectivity ob-

tained by stacking 5 or 6 such capacitive gratings should

be comparable. Losses in the grating elements have been

neglected, and will limit the ultimate reflectivity from

the structure. For good conductors losses should be

small and the values of reflectivity obtained should ap-

proach those calculated above. The spacing a/h = 0.417

gives an attenuation constant of 100 db per wavelength

for the lowest even order TMO. mode, and such a struc-

ture should adequately satisfy our requirements.

Similarly inductive rod grating structures can be con-

sidered using the appropriate equivalent circuits to find

the discontinuity matrix. 13For a spacing of a/A= 0.417,

and rod diameter given by d/a=O.2, s= O.3195,

t= – 0.216j, and w = –4.149j, and the effective propa-

gation constant of the basic element is

cosh ~ = A = 0.3195 cos 0 + 2.1829 sin 6. (28)

The curve of this in Fig. 11 shows that 1=h/4 or 3h/4 is

the optimum spacing for this type, and the values of

reflectivity obtained are given in Table IV.

The effect of a finite sheet thickness on the perforated

hole grating system can be seen by discussing the similar

problem of stacked waveguide hole or iris gratings
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Fig. 1l—Pass and stop bands for thick gratings.

TABLE 111

JICALCULATEDREFLECTIVITY Y. 2FROMA NUMBE:Rn OF
STACKEDCAPACITIVEROD RATINGSAT k/2 SPACINGS.

ROD DIAMETER0.063 INCH,SPACINGa=, 0.103
INCH,h=6.28 MM.

n 1 1 2 3 4 5 6
—-.—— —— — ——

[r%]’ I 0.4854210.87963 I 0.97699 I 0.9958310.9992510.99986

TABLE IV

REFLECTIVITYI r~l 2 OFSTACKEDINDUCTIVEROD
GRATINGSAT 3A/4 SPACING.ROD DIAMETER=0.2A,

SPACINGa= 0.417A.
————

n 1 2 3 4
——- .—.

]rnjz —0.79488 0.98660 0.99876 0.99992
.———

shown in Fig. 12. Values of the susceptamces B. ancl B~

of the equivalent circuit, and other pWameters are

available, 14and as before it is found that the optimum

spacing for this is 1=&/4 or 3h~/4, the pass bamds being

very narrow in the region of O= T for the parameters

A/a = 1.40, a/b= 2, d/a = 0.3, and t/d= 0.27, correspond-

ing to an iris thickness of 0.020 inch at A = 6.28 mm.

Values of reflectivity obtained are higher than those for

thin irises of the same hole diameter, which agrees with

the usual values of coupling factors for thick irises. 15

The behavior of the thick perforated metal plate grat-

ings will be similar, and the reflectivity from. a few of

these at X/4 or 3h/4 spacings will be quite high.

An indication of the bandwidth of the various struc-

tures is given by the effective propagation constant
curves shown in Fig. 7 and Fig. 11; Fig. 13 shows the

reflectivity of capacitive and inductive rod gratings as a

function of 1, and shows that provided a sufficient num-

ber of gratings is used the reflectivity obtained wiH be

13 MarCuVitz, op. cit.,pp.28$289.
14 Marcuvitz, OP.cit.,pp. 408–412.
1sMontgomery d d., op. d., P. 201-
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Fig. 12—Waveguide iris gratings and equivalent circuits.

0 = 2rt/k DEGREES

Fig. 13—Reflectivity versus (1) for capacitive and inductive
rod gratings. No. of gratings (PZ)= 2.

quite high throughout the range of 0 corresponding to a

stop band. In an accurate treatment the variation of the

discontinuity reactance with wavelength must be con-

sidered, and (16) and (23) used to determine the re-

flectivity for different wavelengths. For comparison the

effective propagation constant of a symmetrical element

of the dielectric sheet-air space reflector system was cal-

culated, taking the path lengths 1 in the dielectric and

air equal. If e is the dielectric constant, and !9d = 27rle112/h,

then for no dielectric loss,

cosh @ = (2#12)-l[(c + 2e1/z + 1) COS2Od — (e — l)]. (29)

Fig. 11 shows such a curve for e= 4, indicating that A/4

is best as regards the air space and thickness of dielec-

tric.

V. CONCLUSIONS

The transmission line treatment of the reflector prob-

lem, which is also applicable to the complete interferom-

eter, indicates that the desired performance can be

achieved in a number of ways. Reflectors consisting of

quarter-wavelength dielectric sheets spaced quarter-

wavelength apart are a good solution at longer wave-
lengths where the sheets are of reasonable thickness, al-

though if a good dielectric such as fused quartz is used

they are rather costly, and the size required leads to

difficulties in fabrication. The new types of reflector

structure considered such as stacked capacitive and in-

ductive rod gratings are suitable structures for the in-

terferometer. They are not too difficult to make, and

can be made large without serious difficulty, this being

especially so for the perforated metal plate gratings,

which seems a good structure in all respects. Errors in

the values of the equivalent reactance used for the dis-

continuities would only affect the reflectivity obtained

from a given number of gratings and not the general

method.

Resistive losses in the grating structures have been

neglected, but although these will limit the ultimate re-

flectivity obtained by stacking gratings, it is expected

that it will still be quite high. Optimum spacing of the

gratings must be decided by deducing the effective

propagation constant of the discontinuity involved, and

the results on the gratings considered show that, de-

pending on the type, either a half-wavelength or an odd

quarter-wavelength spacing will be satisfactory. This

also gives an indication of the bandwidth of the particu-

lar reflector system, the results indicting that this will

be adequate. A more accurate treatment of this can be

made, if necessary, using the appropriate equations and

considering the variation of the reactance with wave-

length.

Only dominant mode interaction between the discon-

tinuities has been considered, and the dimensions of the

structures must be such that higher-order modes are

highly attenuated over the distance between gratings.

While the amplitude of each mode will depend on the

geometry of the discontinuity, it is felt that their effects

will be small in the structures considered. The effect of

any residual higher mode coupling would be to change

the equivalent reactance, 16not the general method of

reflector design. Also the rod and strip grating structures

considered depend on the polarization, but the perfo-

rated hole grating can be designed to work for any ar-

bitrary polarized wave.

The ultimate reflectivity obtained will not be unduly

sensitive to the dimensions of the rods, or hole diameter

and plate thickness, provided a sufficient number of

gratings is used. It is important, however, to maintain

the required spacing and alignment of the rods or holes

in the stacked gratings, and also to ensure that the

gratings are parallel. As regards the complete interfer-

ometer, the sharpness of the fringes will be quite sensi-

tive to the parallelism of the two reflectors.
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