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propagation wave number of the exciting field, ¢ and b
are the periods of the structure in x and ¥.

In the case of a structure in free space which is peri-
odic (with period @) in x and arbitrary in y, the free
space modes are modified by replacing the normalization
factor 2 by +/2ma and recognizing that the wave num-
bers k,;” and k,;/’ take on the discrete values

2mw
kxi, = kzi// ol + kxOg
a

m=07i17i2)"'7

while the wave numbers k,;” and k,;”” are given by
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— o < w0,

byl = k' =+ kyo,

These modes are orthogonal in the strip —a/2<x<a/2
and — oo <y< e, In the special case of a structure
periodic in x but uniform in y, such as an infinite strip
grating, the normalization factor is taken as /@, and
n=0. The exponential y dependence is suppressed.
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Reflectors for a Microwave Fabry—Perot Interferometer*
W. CULSHAW+

Summary—The advantages of microwave interferometers for
wavelength and other measurements at millimeter wavelengths are
indicated, and a microwave Fabry-Perot interferometer discussed in
detail. Analogous to the cavity resonator, this requires reflectors of
high reflectivity, small absorption, and adequate size. Stacked di-
electric plates, and stacked planar or rod gratings are shown to be
suitable forms of reflectors, and equations for the reflectivity, opti-
mum spacing, and bandwidth of such structures are derived. A series
of stacked metal plates with regularly spaced holes represents a good
design of reflector for very small wavelengths. Fringes and wave-
length measurements at 8-mm wavelength are given for one design
of interferometer, these being accurate to 1 in 10* without any dif-
fraction correction. For larger apertures and reflectors in terms of
the wavelength, errors due to diffraction will decrease.

I. INTRODUCTION

N conjunction with the efforts directed toward the

generation and use of shorter wavelengths in the

millimeter region, it is necessary to develop new
techniques of transmission and measurement. The fa-
cility with which methods based on optical techniques
can be used for this purpose improves as the wavelength
decreases, in contrast to the conventional waveguide
methods, where the dimensions of cavity resonators and
other components are in general comparable with the
wavelength, with a consequent increase in attenuation
and fabrication difficulties. Wavelength measurements
can be made with interierometers based on optical prin-
ciples, and at wavelengths around a few millimeters,
such methods would be preferable to the use of a cavity
resonator.

* Manuscript received by the PGMTT, July 10, 1958; revised
manuscript received, November 10, 1958.
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Fig. 1—Microwave form of Michelson interferometer.

A free-space form of Michelson interferometer is
shown in Fig. 1;here the beam from the radiating horn is
divided by the beam divider into two beams which
travel different paths. The two beams then are recom-
bined in the receiving horn, and interference is observed
between the two sinusoidal wave trains as one of the re-
flectors is moved. This interferometer has been operated
at A=1.25 cm,! the wavelength measurements with a
particular form being accurate to a few parts in 10*
without any correction for diffraction. The free-space
beam divider and reference arm can be replaced by a
hybrid tee at these wavelengths, and then only a single
radiator and reflector are required for the open arm.

1 W. Culshaw, “The Michelson interferometer at millimeter wave-
lengths,” Proc. Phys. Soc. B, vol. 63, pp. 939-954; November, 1950.
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Such an interferometer was used by Froome for the ac-
curate determination of the velocity of electromagnetic
waves by microwave interferometry.? By applying a dif-
fraction correction for the open arm of the interferome-
ter, he obtained a result in agreement with recent deter-
minations by other methods, including the cavity reso-
nator.?

Microwave inferferometers can also be used with ad-
vantage at wavelengths around 1 cm and below for the
measurement of dielectric constants, and at very short
wavelengths would again be preferable. Both the Mi-
chelson and Fabry-Perot types of interferometer have
been used for this purpose,'* and more recently Blair®
has described a microwave interferometer designed spe-
cifically for the measurement of dielectric constants of
materials in sheet form at wavelengths around 3 cm.

The fringes in the Michelson interferometer are due
to the interference of two wave trains, and for maximum
sensitivity the beams must be accurately balanced to
give a sharp null. In the Fabry-Perot interferometer
shown in Fig. 2 the fringes are made very sharp by
multiple reflections between two highly reflecting sur-
faces, and in the microwave region it represents the free-
space analog of the cavity resonator. The narrow bright
rings in the optical form of this interferometer show the
increased resolution possible.® The principle of the mi-
crowave form is exactly analogous, though the technique
of reflector design is different because any metallic film
would seriously attenuate the microwave radiation.
Also, we deal essentially with a single plane-wave train
in the microwave form so that the circular fringe system
is not obtainéd, except that the distance d between the
reflectors can be adjusted to pass various portions of the
continuous plane-wave spectrum radiated by the aper-
ture.

To obtain high sensitivity in this interferometer the
reflectivity of the reflectors must approximate that of
metals such as silver, and undue attenuation in the re-
flector system must be avoided. The reflectors and aper-
tures used must also be large compared with the wave-
length, so that errors in the wavelength measurement
due to diffraction are reduced, and their consideration
facilitated as required in work of high precision. We
shall be mainly concerned with ways of meeting these
requirements on the reflectors, bearing in mind that any
reflector technique developed should be applicable to
wavelengths extending down to 1 millimeter and below,
when adequate sources are available.

2 K. D. Froome, “Determination of the velocity of short electro-
magnetic waves by interferometry,” Proc. Roy. Soc. 4, vol. 213, pp.
123-141; 1952,

3 L. Essen, “The velocity of propagation of electromagnetic waves
derived from the resonant frequencies of a cylindrical cavity resona-
tor,” Proc. Roy. Soc. A, vol. 204, pp. 260-277; December, 1950.

4+ W. Culshaw, “The Fabry-Perot interferometer at millimeter
wavelengths,” Proc. Phys. Soc. B, vol. 66, pp. 597-608; July, 1953.

5 G. R. Blair, “An ultra-precise microwave interferometer,” 1958
IRE NatioNaL COoNVENTION RECORD, pt. 1, pp. 48-56.

¢ F. A. Jenkins and H. E. White, “Fundamentals of Optics,” Mc-
Graw-Hill Book Co., Inc., New York, N. Y., pp. 269-274; 1950,
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Fig. 2—Microwave Fabry-Perot interferometer,

The theory of the Fabry-Perot interferometer as ap-
plied to the microwave region will be dealt with first,
together with the theory necessary for the consideration
of composite reflecting systems. These will consist of
lattice structures such as stacked dielectric plates,
stacked metal rod gratings, and stacked metal plates
with holes in them.

II. Tur FABRY-PEROT INTERFEROMETER

An arrangement of this is shown in Fig. 2, electro-
magnetic horn radiators with lenses being used to pro-
duce efficient radiating and receiving apertures. Radi-
ated energy passes between the reflectors, represented
by the dielectric sheet reflectors shown, and at certain
spacings of the reflectors, separated by \/2 intervals, the
multiply reflected waves reinforce each other to give a
sharp transmitted fringe. The sharpness of the fringe as
d varies depends on the reflectivity obtained, and on the
angular width of the radiated and received spectra,
since d can be optimized for each plane wave in the
spectrum. This interferometer is basically quite simple,
it does not require any form of beam divider, and the
problem of preserving a balance with displacement be-
tween two interfering beams, as in the Michelson type,
does not arise. It is, however, necessary to use highly
reflecting devices for the reflectors, as the setting ac-
curacy and the diffraction correction will depend on this.

The theory of operation of the interferometer may be
developed using transmission line theory. Referring to
Fig. 3, the general transmission line matrix of the sym-
metrical four terminal network may be written

Vst A4 B[V,
L=l dle] ®

Toi1 C AlLIL
For matched conditions at the output, and all imped-
ances normalized with respect to the characteristic im-
pedance of the line, the input impedance Z;, may be

determined. The voltage amplitude reflection coefficient
is then,

B-C

=T 2
24 + B+ C

¥y
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and the ratio of the voltage or current at the output
terminals to the incident voltage or current is given by

2

= . (3)
24+ B+C

Assuming a single plane wave propagating along its
axis, the equation governing the transmission and re-
flection in the complete interferometer may be written
in matrix form as

I:V,H_l:l ,:a b:l [cosh vd sinh 'yd:l ,:a b] [Vn] @
Tni1 ¢ allLsinhvydcoshydllLec adll, ’

where the elements a, b, and ¢, refer to the symmetrical
reflectors, ¥ =a-jB is the propagation constant for the
medium between the reflectors, and d is the distance be-
tween them. With matched conditions at the output

terminals, the condition for no reflection from the in-
terferometer is

2a
b+ ¢

At this separation the whole system is matched, and
assuming no loss in the reflectors or in the medium be-
tween them, the modulus of the transmission coefficient
is unity.

Using (4), and substituting the matrix elements cor-
responding to 4, B, and C in (2) and (3), the reflection
and transmission coefficients of the interferometer, 7r
and #7, may be determined. For no loss in the reflectors,
and with y =78 these may be written

tanh vd = — (5)

4R sin? ¢
)hP:1—2RwM¢+R2 (©)
(1 — R)?
[hP=1—2mei+R2 @)
where
¢ = (8d+¥), = |r],
and

| 7] exp (=) = j(b — /120 +jb + ).
Hence |#|? and |7;|? have maximum values when
and ¢ = (2n + 1)x/2 (8)

¢ = nm,

respectively, where # is the order of interference.
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Egs. (6) and (7) show that the sharpness of the
fringes depends on the value of reflection coefficient, R,
obtained, and some fringe shapes for various reflectivi-
ties are shown in Fig. 4. For precise work high reflec-
tivity must be used since the discrimination with d, or
setting accuracy achieved, will depend on this. A meas-
ure of the fringe sharpness may be obtained by deducing
the Q factor of the reflectors from (7), since the value of
¢ at which the transmitted power is half the maximum
is given by

[2R — (1 — R)2]/2R. 9)

cos 2¢; =

T T ﬁ| T 4 T T T T
Mz (1-R)

1~2Rcos2 ¢ +RE

$= Bd+y

ot 0 0l 02 03
2¢ IN RADIANS

Fig. 4—Variation of {ringe sharpness with reflectivity.

The change in 8d required to obtain the angle ¢, can be
effected by changing the wavelength, or the spacing of
the reflectors, and the respective Q values deduced are

A
Qx=‘2*§=§;(”7r—\lf)
and
04 = A, (10)
2Ad ¢

Actually instead of the single plane wave assumed so
far, the aperture will radiate an angular spectrum of
plane waves determined by its size, and its field distribu-
tion. The portion of this angular spectrum which is effec-
tive between the reflectors at any particular spacing &
may be deduced from (8) and (10), since a wave travel-
ing at an angle @ to the axis corresponds to a change in
path length given by

Ad = d(1 — cos 6), (11)

and can also be regarded as a change in effective wave-
length to \/cos 8. As an approximation considering only
those waves propagated between the positions of half-
maximum intensity the result is

cos @ =1 — 1/20,, (12)

which shows that the higher the reflectivity, the smaller
the number of plane waves which are transmitted
through the interferometer at optimum, and other
spacings of the reflectors.
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For reflectors very large compared with the wave-
length, the angular width of the plane-wave spectra
generated will correspond to the radiation pattern of the
horns, and depending on the reflectivity as indicated by
(12), a number of these will be passed by the reflector
system at any particular distance d, the reflector system
thus acting as a plane-wave filter. The summation of the
plane waves which pass through the complete interfer-
ometer will lead to an optimum setting slightly different
from that given by (8), which assumes a single plane
wave along the axis, and in the measurement of length
with the interferometer the diffraction correction is the
difference between the errors due to the two summations
of plane waves effective in the interferometer at the
initial and final reflector separations used. The correc-
tion can be made small if the reflectivity and order of
interference used are such that § becomes a very small
angle. In general, for the high values of reflectivity dis-
cussed later, and apertures and reflectors some 15 wave-
lengths in extent, it is found experimentally that the
error due to diffraction in a wavelength measurement on
the interferometer is around a part in 10% For apertures
and reflectors larger in terms of wavelengths the error
would decrease. Some quantitative discussion on the
diffraction correction could be made using (7) to find the
transmission coefficient through the interferometer for
different distances d and reflectivities. The radiated and
received angular spectra of the apertures, their distances
from the reflectors, and the reflector size would also
have to be considered.

I11. THEORY OF REFLECTOR DESIGN

One type of reflector which has been used* is shown in
Fig. 2, and consists of a number of quarter-wave plates
of dielectric with quarter-wave air spacings between
them. If € is the dielectric constant and zero dielectric
loss is assumed, the amplitude reflection coefficient from
n such sheets and spacings is equal to that of a single
quarter-wave sheet having a dielectric constant of €*. In
view of the high reflectivities involved, however, the
effect of a finite dielectric loss must be considered, and
it is found* that if A4; refers to the amplitude reflection
coefficient from a single quarter-wave sheet, and 4, that
from #z such sheets with quarter-wavelength spacings
between them, then

A+ Au(Re* + )/ (1 + RoY)

Apyq = ,
+ 1+ A4,

where 4;=Ro(1+¢)/(1+Re%), ¢y =exp (—= tan 8/2),
tan & is the loss tangent of the dielectric, and R, is the

(13)

scos 8+ 7/2sin 60 + w),

]
It cosO(w + £)/2 + jssind + (w — £)/2,

amplitude reflection coefficient at the air-dielectric
boundary. The effect of dielectric loss is to limit the re-
flectivity obtainable by stacking such sheets. For poly-
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styrene ¢=2.56 and tan §=0.001 approximately, and
the values of 4, shown in Table I are obtained, the
limiting value being 0.9982.

TABLE I

VALUES OF THE AMPLITUDE REFLECTION COEFFICIENT
OBTAINED FROM # QUARTER-WAVE PLATES OF
POLYSTYRENE WITH A/4 AIR
Space BETweEN THEM.

n 12‘3!4!5'6 7{8

A, [0.4378 0.734o|0 .8861)0 .9528]0.9806\0 .9913(0 .9961\0.9977

Fig. 5 shows the fringes obtained, at given spacings of
the reflectors, as d is varied for an interferometer with
reflectors consisting of eight such plates of polystyrene.*
These had a diameter of about 11 inches, the radiating
and receiving apertures being 6 inches square, and the
wavelength around 8.33 mm. The sharpness of the
fringes illustrates the potentialities of this interferome-
ter for accurate measurements at very short wave-
lengths. For a dielectric with smaller loss and higher
dielectric constant, such as fused quartz, higher values
of reflectivity can be obtained. Such reflectors would be
very costly due to the required size, except at very short
wavelengths, but here the reflector plates become very
thin. Odd multiples of quarter wavelength may be used,
but the ultimate reflectivity obtained and the band-
width of the reflectors will decrease.

This leads to the consideration of other types of re-
flectors, such as a stacked system of gratings, consisting
of plane layers of inductive, or capacitive, irises or rods
placed symmetrically behind each other, similar to the
structures used in delay dielectrics.” Fig. 3 shows the
basic element which can be used for all the structures
considered, the particular grating being represented by
a discontinuity transmission matrix symmetrically lo-
cated on a length of parallel plate transmission line. The
transmission line matrix representing the discontinuity
may be derived from the equivalent networks of the
various gratings, and the reflectivity from a finite num-
ber of such elements must be determined. Only TEM
mode interaction between the gratings is considered,
and all other modes on the structure must be evanescent.
Since only even order modes are excited on such a sym-
metrical structure, a spacing between grating elements
less than X is sufficient for this, but in practice a spacing
less than A/2 is preferable.

The matrix representing the basic element shown in
Fig. 3 may be written for a lossless transmission line as,

cos(w + #)/2 4+ jssinf — (w — t)/Z:H:Vn] (14)

scos B+ 7/2 sin 6(¢t + w) I,

7 J. Brown, “Microwave Lenses,” Methuen and Co. Ltd., London,
Eng., pp. 53-68; 1953,
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Fig. 5—Fringe shapes measured on microwave
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where 8 =2xl/\. Also referring to (2) and (3), and Fig. 6,
we obtain for the general four terminal network,

B—-C 24 — (B+C)
bn_|_1 ’ bn
2 2
= , (15)
244+ B+ C B—-C
Ant1 —"——'—2 1 - ) an

and since 7,41=">0411/any1, and 7, =a,/b,, the recurrence
relation between the reflection coefficients for elements
in cascade is,

[24 - (B+ Ol +B-C
24 + B+ C— (B— O

Fnyr = (16)
and by inserting elements corresponding to 4, B, and C,
from (14), the reflectivity from a number of basic ele-
ments may be determined. The transmission coefficient
tn=by/041 may also be deduced from (15).

The spacing ! between gratings for optimum reflection
may be deduced from the equivalent matrix of the basic
element by deducing its effective propagation constant
T', and characteristic impedance Z. Using (1), these are
given by?

coshTY = 4, and Z22= B/C 17

and may be determined from (14) for any particular
structure. Putting ¢ =T, the over-all matrix for # such
structures in cascade may then be written as

Va cosh np, Zsinhue [V
=1 (18)
I, —Z« sinh n¢, cosh n¢ I

Consider such a periodic structure, then by (14)

coshep = 4 = scosf~+7/2sin0(+ w), (19)

and putting ¢ = (a+jB)/, since cosh ¢ must be real, the
stop bands of the structure are given by sin 8=0, and
the pass bands by sinh a=0. Thus for the pass bands:

cos 3 = A where ] A] <1, (20)
and in the stop bands:
cosha = | A| where |4] >1. (21)

8 1. Brillouin, “Wave Propagation in Periodic Structures,” Dover
Publications Inc., New York, N. Y., pp. 193-226; 1953.
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Thus from (2) and (18), if the spacing / between grat-
ings is such that § lies within a pass band of the struc-
ture, the reflection coefficient 7, becomes

7(Z% — 1) sin #B
Pa =
27 cosnB + 7(Z2 + 1) sin #p

(22)

while for spacings corresponding to a stop band,

(2% — 1) sinh na
o = - . (23)
27 cosh na+(Z2+1) sinh na

For spacings such that 6 lies within the pass band, the
reflection coefficient 7, will oscillate with increase in #,
and become zero when sin #8=0. As an example, a thin
grating may be represented by an admittance ¥ =3B on
the line and (14) and (20) give

cos B = cosf — B/2sin @ (24)

and 73=0 when tan? §(1—B2+4B tan 0--3=0, with
similar results for other values of .

When [ is such that @ lies in the stop band of the struc-
ture, the reflectivity will increase monotonically with #,
and it is found from (17), (22), and (23) that the spacing
for maximum reflectivity, corresponds to the value of
0 which gives the maximum value of cosh o= | 4| within
the stop band. Eq. (24) is plotted in Fig. 7 for various
values of B; for inductive admittances the pass band
extends from values of 8§ <w to @=m, the interval di-
minishing with increasing values of B. Similar remarks
apply to capacitive admittances, the pass band now ex-
tending from #=x to §>m. Thus /=\/2 is not a good
spacing for gratings of this type since it corresponds to
the edge of the pass band and will be frequency sensi-
tive. The spacing for optimum reflection corresponds to
the maxima of these curves, which shows that, except
for small values of B, a spacing of I=X\/4 will be satis-
factory for thin gratings. For B= —2 the pass band ex-
tends from f#=m/2 to §=m, and Fig. 8 shows the varia-
tion in reflectivity, and the zeros which occur within the
pass band for different values of # and spacing /. Similar
considerations apply to thick gratings, and will be used
to optimize the design of reflectors of this type.

1V. ApprLICATION TO GRATING REFLECTORS
A) Thin Planar Gratings

Fig. 9 shows a good structure for the reflectors, which
consists of a series of circular holes regularly spaced in a
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Fig. 8—Reflectivity |7,|2 versus spacing [ for thin gratings, showing
oscillations of reflectivity in pass band of structure.

thin metal sheet. Such a system of gratings is equivalent
to a number of inductive susceptances across the parallel
plate transmission line, and values of the normalized
susceptances are given by (25),° when the transverse
spacings @ and b are <\, and where R/a and R/b<1,R
being the hole radius.

3abA 72
8= R3 TAR?
[ 2> (emn? /b + ean/az)le(X)] (25)
m=0 n=0
where X — [#R(m2/a2+ n2/b2) |12/ (m2 /a4 n2/bT)5/2, the
primes denote summation over even integers only, J; is
the Bessel function of order unity, and e€,,=1 if
if m, n=0, and =2 if m, n£0. For a/R>5 the term
3abN/8wR3, which agrees with the usual value of sus-
ceptance for such a small hole,!? is adequate.
Values of the reflectivity ]rn[ 2 for such a structure,
calculated from (16) or (23), are shown in Table II for

9 J. Munushian, “Electromagnetic Propagation Characteristics of
Space Arrays of Apertures-in-Metal Discontinuities and Comple-
mentary Structures,” University of California, Berkeley, Electronics
Res. Lab. Rep., Ser. No. 60, Issue 126; September, 1954.

10 C, G. Montgomery, R. H. Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” M.I.T. Rad. Lab. Ser., McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 176-179; 1948,
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TABLE II

VALUES OF REFLECTIVITY, ]rn] 2, OBTAINED FROM A
NUMBER OF THIN INDUCTIVE GRATINGS
AT I=X\/4 SPACING.

n } B=-2 ¥ B=—5 B=-10 | B=-30
1 0.5000 0.86207 0.96154 0.99558
2 0.8000 0.99364 0.99960 0.99999

a spacing ! of \/4, the reflectivity increasing when
further gratings are added. At a wavelength of 6.28
mm, with spacing ¢ =b=0.125 inch, and a hole diameter
of 1/16 inch, the normalized susceptance would be
around — 15, and the attenuation constant for the first
higher mode on the structure would be 86 db per wave-
length, representing a suitable design for this wave-
length.

Similarly the reflectivities possible by stacking induc-
tive or capacitive strip gratings may be calculated using
the appropriate formula for the equivalent reactances.!!

B) Thick Gratings

A capacitive rod type of grating structure is shown in
Fig. 10, with the equivalent circuit, the electric vector
being perpendicular to the metal rods. Values of the
appropriate reactances are given by!2 :

. = 1 e |:1+7;821'2+ 1 e <2vrr>
= > e : 2 B3%r%1n -
7‘_2’,2
- 30,2]
1 1‘..‘3272 1 3627’2
X, = — — [1 + — 8% In (2ar/a) — ], (26)
2 a 2 8

where §=2m/\, a is the rod spacing in the grating, and
7 is the rod radius. Using these values the discontinuity
matrix is determined, and substitution of its elements
into (17), gives the effective propagation constant, and
characteristic impedance of the basic element, The re-
flectivity follows from (16) or (23), once the spacing for

I N. Marcuvitz, “Waveguide Handbook,” M.I.T. Rad. Lab. Ser.,
McGraw-Hill Book Co., New York, N. Y., pp. 280-285; 1951.

12 L. Lewin, “Advanced Theory of Waveguides,” Iliffe and Sons
Ltd., London, Eng., pp. 37-44; 1951,
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optimum is determined; this is done by finding the
value of / which gives the maximum value of cosh «, as
indicated in Section III.

Consider a wavelength of 6.28 mm and rods of diame-
ter 0.063 inch, which are readily available, then r/A
=0.1275, and for a/A=0.417, (26) gives X,= —0.95 and
X,=—0.372, and hence s=1.3916, ¢{=—0.8904, and
w=1.053j. The effective propagation constant of the
basic element is then

cosh ¢ = 4 = 1.3916 cos § — 0.0815 sin 0.  (27)

Fig. 11 shows the variation of 4 with 8, the optimum
value of / being close to A/2 for this grating. Values of
reflectivity [ rnl 2 are shown in Table I11 for this spacing.
A spacing ! of 3\/4 was also considered, but as indicated
by Fig. 11, such a spacing is within the pass band of the
infinite structure, and is not suitable. The wvalues
|71]2=0.48542 and |7.] 2=0.0244 obtained, showed this
conclusion to be correct.

At a wavelength of 6 mm the bulk reflectivity |7|? of
silver is around 0.99958, and thus the reflectivity ob-
tained by stacking 5 or 6 such capacitive gratings should
be comparable. Losses in the grating elements have been
neglected, and will limit the ultimate reflectivity from
the structure. For good conductors losses should be
small and the values of reflectivity obtained should ap-
proach those calculated above. The spacing a/A=0.417
gives an attenuation constant of 100 db per wavelength
for the lowest even order TM,, mode, and such a struc-
ture should adequately satisfy our requirements.

Similarly inductive rod grating structures can be con-
sidered using the appropriate equivalent circuits to find
the discontinuity matrix.® For a spacing of a/A=0.417,
and rod diameter given by d/¢=0.2, s=0.3195,
t=—0.2164, and w= —4.149j, and the effective propa-
gation constant of the basic element is

cosh¢ = 4 = 0.3195 cos 6 + 2.1829 sin 6.  (28)

The curve of this in Fig. 11 shows that I=A/4 or 3\/4 is
the optimum spacing for this type, and the values of
reflectivity obtained are given in Table IV.

The effect of a finite sheet thickness on the perforated
hole grating system can be seen by discussing the similar
problem of stacked waveguide hole or iris gratings

13 Marcuvitz, op. cit., pp. 285-289.
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TABLE 111

CALCULATED REFLECTIVITY é 72|2 FROM A NUMBER # OF
STACKED CAPACITIVE ROD GRATINGS AT A\/2 SPACINGS.
Rop DIAMETER 0.063 INCH, SPACING ¢ =0.103
INCH, )\=6.28 MM.

n ] 1 2 j 3 4 5 6

[ra]2 |0.48542 0.8796310.97699 0.99583 | 0.99925 | 0.99986

TABLE 1V

REFLECTIVITY Irnl 2 OF STACKED INDUCTIVE RoD
GRATINGS AT 3\/4 SPACING. Rop DIAMETER =0.2],
SPACING a=0.417\.

" 1 \ 2 ’ 3 4
0.99992

I”nfz

0.70488 | 0.98660 | 0.99g76

shown in Fig. 12. Values of the susceptances B, and B,
of the equivalent circuit, and other parameters are
available,* and as before it is found that the optimum
spacing for this is J=M\,;/4 or 3\,/4, the pass bands being
very narrow in the region of § == for the parameters
N a=1.40,a/b=2,d/a=0.3, and ¢t/d =0.27, correspond-
ing to an iris thickness of 0.020 inch at A=6.28 mm.
Values of reflectivity obtained are higher than those for
thin irises of the same hole diameter, which agrees with
the usual values of coupling factors for thick irises.!
The behavior of the thick perforated metal plate grat-
ings will be similar, and the reflectivity from a few of
these at A/4 or 3\/4 spacings will be quite high.

An indication of the bandwidth of the various struc-
tures is given by the effective propagation constant
curves shown in Fig. 7 and Fig. 11; Fig. 13 shows the
reflectivity of capacitive and inductive rod gratings as a
function of /, and shows that provided a sufficient num-
ber of gratings is used the reflectivity obtained will be

1 Marcuvitz, op. cit., pp. 408-412.
1 Montgomery ef al., op. cit., p. 201,
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quite high throughout the range of 8 corresponding to a
stop band. In an accurate treatment the variation of the
discontinuity reactances with wavelength must be con-
sidered, and (16) and (23) used to determine the re-
flectivity for different wavelengths. For comparison the
effective propagation constant of a symmetrical element
of the dielectric sheet-air space reflector system was cal-
culated, taking the path lengths ! in the dielectric and
air equal. If ¢ is the dielectric constant, and s = 2wle'/?/\,
then for no dielectric loss,

cosh ¢ = (2e/2)~[(e + 22 ++ 1) cos?0s — (e — 1)].  (29)

Fig. 11 shows such a curve for e=4, indicating that \/4
is best as regards the air space and thickness of dielec-
tric,

V. CONCLUSIONS

The transmission line treatment of the reflector prob-
lem, which is also applicable to the complete interferom-
eter, indicates that the desired performance can be
achieved in a number of ways. Reflectors consisting of
quarter-wavelength dielectric sheets spaced quarter-
wavelength apart are a good solution at longer wave-
lengths where the sheets are of reasonable thickness, al-
though if a good dielectric such as fused quartz is used
they are rather costly, and the size required leads to
difficulties in fabrication. The new types of reflector
structure considered such as stacked capacitive and in-
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ductive rod gratings are suitable structures for the in-
terferometer. They are not too difficult to make, and
can be made large without serious difficulty, this being
especially so for the perforated metal plate gratings,
which seems a good structure in all respects. Errors in
the values of the equivalent reactances used for the dis-
continuities would only affect the reflectivity obtained
from a given number of gratings and not the general
method. ‘

Resistive losses in the grating structures have been
neglected, but although these will limit the ultimate re-
flectivity obtained by stacking gratings, it is expected
that it will still be quite high. Optimum spacing of the
gratings must be decided by deducing the effective
propagation constant of the discontinuity involved, and
the results on the gratings considered show that, de-
pending on the type, either a half-wavelength or an odd
quarter-wavelength spacing will be satisfactory. This
also gives an indication of the bandwidth of the particu-
lar reflector system, the results indicting that this will
be adequate. A more accurate treatment of this can be
made, if necessary, using the appropriate equations and
considering the variation of the reactances with wave-
length.

Only dominant mode interaction between the discon-
tinuities has been considered, and the dimensions of the
structures must be such that higher-order modes are
highly attenuated over the distance between gratings.
While the amplitude of each mode will depend on the
geometry of the discontinuity, it is felt that their effects
will be small in the structures considered. The effect of
any residual higher mode coupling would be to change
the equivalent reactances,'® not the general method of
reflector design. Also the rod and strip grating structures
considered depend on the polarization, but the perfo-
rated hole grating can be designed to work for any ar-
bitrary polarized wave.

The ultimate reflectivity obtained will not be unduly
sensitive to the dimensions of the rods, or hole diameter
and plate thickness, provided a sufficient number of
gratings is used. It is important, however, to maintain
the required spacing and alignment of the rods or holes
in the stacked gratings, and also to ensure that the
gratings are parallel. As regards the complete interfer-
ometer, the sharpness of the fringes will be quite sensi-
tive to the parallelism of the two reflectors.
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